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Abstract
The electronic structures of zigzag bilayer graphite nanoribbons (Z-BGNRs) with various
ribbon widths N are studied within the tight binding approximation. Neglecting the inter-layer
hopping amplitude γ4, which is an order of magnitude smaller than the other inter-layer hopping
parameters, there exist two fixed Fermi points ±k∗ independent of the ribbon width with a
peculiar energy dispersion near k∗ as ε(k) ∼ ±(k − k∗)N . By investigating the edge states of
Z-BGNRs, we notice that the trigonal warping of the bilayer graphene sheets is reflected in the
edge state structure. With the inclusion of γ4, the above two Fermi points are not fixed but drift
toward the vicinity of the Dirac point with increasing width N , as shown by the finite scaling
method, and the peculiar dispersions change to parabolic ones. The edge magnetism of
Z-BGNRs is also examined by solving the half-filled Hubbard Hamiltonian for the ribbon using
the Hartree–Fock approximation. We have shown that within the same side of the edges, the
edge spins are aligned ferromagnetically for the experimentally relevant set of parameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphite nanoribbons (GNRs) are quasi-one-dimensional
carbon sheets whose width and chirality can be well controlled
by current nano-lithography techniques [1]. Due to the high
mobility of the sample and the relativistic energy dispersion
relation of the massless Dirac fermion, there has been a lot of
interest both theoretically and experimentally in investigating
the electronic properties of GNRs [2–17]. The electronic
properties of GNRs are closely controlled by their chirality,
as is well known for the case of carbon nanotubes. Among
the GNRs with different chiralities, armchair and zigzag GNRs
have been studied most intensively [2–6, 9–17]. Unlike carbon
nanotubes with a compact angle that varies for transverse
modes, a GNR can support edge states. Recently, the edge
states of zigzag GNRs have been of great interest due to their
peculiar dispersion relation with almost flat edge bands near
zero energy [3, 14, 15]. When Coulomb interactions are taken
into account, the existence of flat edge bands may lead to edge
magnetism for various kinds of ribbon edges [3, 17–19]. It
has been shown that the edge magnetism of zigzag GNRs is
ferromagnetic along each edge and anti-ferromagnetic between
the two different edges due to the bipartite nature of the

lattice structure. This kind of edge magnetism has been
widely studied within first-principles calculations [20–23].
Furthermore, its potential as a half-metallic material under
a lateral electric field has been demonstrated within a first-
principles approach by Son et al [18]. Hence, to identify the
edge states of the various GNRs it is crucial to understand both
the magnetic and electric properties of the system.

In the paper we study the electronic and magnetic structure
of a zigzag bilayer GNR with various ribbon widths N . First,
we give a brief review of the bilayer graphene system. The
bilayer graphene system consists of two coupled graphene
sheets and its tight binding electronic structures are determined
by four leading characteristic hopping parameters, as shown
in figure 1(a). This system has demonstrated quite unique
electronic properties compared to a single graphene sheet,
such as a larger Hall step and different kinds of chiral
quasiparticles and distinct electronic structures [24]. The most
distinctive electronic feature of the bilayer graphene system
is the existence of trigonal warping of the Fermi level in the
vicinity of the Dirac points, as demonstrated in the inset of
figure 2(a). This means that the band of the graphite bilayer
near the Dirac point does not form a cone but a trigonally
curved cone and there are three additional pockets along
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Figure 1. (a) Our model system of Bernal stacked Z-BGNR. Both the three inter-layer (γ1, γ3 and γ4) and one intra-layer hopping (γ0)
parameters are shown. The Z-BGNR has a translational symmetry along �T . The sublattice A is colored yellow (pale gray) while B is colored
green (dark gray). (b) Definition of the width of the Z-BGNR. Here the red lines (pale gray) are the lower graphene sheet and the black lines
the upper one. The tildes above A and B stand for the upper layer and the black box represents a unit cell of the Z-BGNR.
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Figure 2. (a) Projected band structure of the 2D graphite bilayer along the direction of the zigzag axis. The boxed region near the Dirac point
is magnified in the inset, which shows trigonal warping. D is the Dirac point at k = 2π/3 and three L points are the Fermi points of three
nearby pockets. (b) A schematic diagram of the zero-energy edge states of a semi-infinite Z-BGNR near the Dirac point within the red box
in (a). At ε = 0, the two eigenstates are drawn with different colors. Red (dark gray) for ψ− and yellow (pale gray) for ψ+. D is the Dirac
point while T1, T2, and the two warped bands reflect the effect of trigonal warping of the graphite bilayer. The inset shows the energy
dispersion curve obtained by a numerical method for Z-BGNRs with finite widths N = 100, 200.

the directions of zigzag chirality. It has been shown that
these peculiar electronic structures, which are controlled by
the inter-layer hopping parameters γ1 and γ3, produce extra
degeneracies in the Landau levels. The three extra Dirac cones
are known to play an important role in determining the minimal
conductivity of the graphite bilayer [25].

In this work we focus on the edge state structure of
Z-BGNRs with various ribbon widths N . Since the three
legs in the band structure of the graphite bilayer lie along
the direction of zigzag chirality, we have chosen Z-BGNRs
in order to see the possible signature of trigonal warping
imprinted on the edge state structure of the system. The
schematic structure of a Z-BGNR is shown in figure 1(a). We
have chosen Bernal stacked GNRs, where the widths of the
two layers are the same and the width is defined to be the
number of dimer lines N , as shown in figure 1(b). We use
the tight binding method to calculate the band structures of Z-
BGNRs with varying widths. According to the experimental

data, the inter-layer hopping amplitude γ4 is much smaller
than γ3 by an order of magnitude [26]. Neglecting γ4, we
notice that the Z-BGNR has two fixed Fermi points at k =
±k∗ with k∗ = 2 cos−1(

√
γ̄1γ̄3/2) and the following energy

dispersion relation ε ∼ ±(k − k∗)N . As N goes to infinity,
a dispersionless edge band appears. By analyzing the semi-
infinite Z-BGNR case analytically, we have demonstrated that
trigonal warping manifests itself in the edge band structure
of a Z-BGNR. Interestingly, the existence of the edge states
seems to be consistent with the condition imposed by the
Berry phase argument [27]. With the inclusion of γ4, the
particle–hole symmetry is broken and the energy gap appears
in the dispersion. In this case, the conduction band minimum
and the valence band maximum occur at two different points,
ke and kh, respectively. They are no longer fixed points
independent of N but rather drift toward the Dirac point with
increasing N . By examining a semi-infinite Z-BGNR with
γ4 taken perturbatively and using the scaling method as well,
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we have analyzed the edge states in further detail. We notice
that one edge band remains flat while the other edge band
becomes dispersive. These two edge bands appear below
ε = 0 and split in proportion to the hopping parameter
γ4. Finally, the magnetic properties of Z-BGNRs are studied
by investigating the Hubbard Hamiltonian obtained from the
inclusion of the on-site Coulomb repulsion U based on the
Hartree–Fock approximation. We have calculated the magnetic
moments at the edge as a function of U for a half-filled system
at zero temperature. Our main concern is that the possible half-
metallicity would persist in a Z-BGNR upon lateral gate bias.
Our result has shown that for a realistic value of U (U/γ0

∼= 1),
the ferromagnetic alignment of the edge spins within the same
side of the edges is favorable. This implies that spintronic
application of Z-BGNRs is quite promising.

The paper is organized as follows. In section 2, a
detailed description of the tight binding model for Z-BGNRs
is given. In section 3, we investigate the electronic structures
of Z-BGNRs with or without the small inter-layer hopping
parameter γ4. We focus on the edge state structure based on
the formulae of section 2. Without γ4, the coupled equation
to obtain the energy dispersion relation can be simplified
and one can extract the important features of the edge states
in the system. We analyze the semi-infinite Z-BGNRs to
obtain the analytic formulae of the edge state amplitudes.
In section 4, the inter-layer edge magnetism of a Z-BGNR
is studied by including the Hubbard type onsite interactions.
Finally, summaries will be given in section 5.

2. Tight binding Hamiltonian

We introduce the tight binding model for Z-BGNRs by
considering the four hopping parameters γ0, γ1, γ3 and γ4,
where γ0 is the intra-layer hopping and the others are inter-
layer hopping amplitudes as shown in figure 1(a). This type
of approach has been successfully employed in the study the
electronic structure due to the pz-orbital of various carbon
based materials including GNRs [3, 15, 16]. We begin with
the following Hamiltonian:

H = −
∑

〈i, j〉
ti j c

†
i c j (1)

with

ti j = 〈ϕ(�r − �Ri )|H |ϕ(�r − �R j )〉 (2)

where the summations over i and j include all the hopping
processes related to the four hopping parameters. For the sake
of simplicity, we redefine the index i in terms of the following
three indices such as ci = cα(m, λ), where α represents the
unit cell of a Z-BGNR, m is the index of dimer lines which
runs from 1 to N , and λ one of the four sublattices A, B, Ã
and B̃ as shown in figure 1(b). By transforming this to the
collective modes

cm,λ(k) = 1√
N

∑

α

e−ikyαcα(m, λ) (3)

where yα denotes the position of αth unit cell, the general states
can be written by

|ψ(k)〉 =
∑

m,λ

ψmλc†
m,λ(k)|0〉. (4)

By substituting equation (4) into a Schrödinger equation with
Hamiltonian (1), one can obtain the following four recurrence
relations:

εψm A = γ0

(
2 cos

k

2
ψmB + ψm−1B

)
+ γ3

(
2 cos

k

2
ψm−1B̃

+ψmB̃

)
+ γ4

(
2 cos

k

2
ψm Ã + ψm−1 Ã

)
(5a)

εψmB = γ0

(
2 cos

k

2
ψm A + ψm+1A

)
+ γ1ψm Ã

+ γ4

(
2 cos

k

2
ψmB̃ + ψm−1B̃

)
(5b)

εψm Ã = γ0

(
2 cos

k

2
ψmB̃ + ψm−1B̃

)
+ γ1ψmB

+ γ4

(
2 cos

k

2
ψm A + ψm+1A

)
(5c)

εψmB̃ = γ0

(
2 cos

k

2
ψm Ã + ψm+1 Ã

)
+ γ3

(
2 cos

k

2
ψm+1A

+ψm A

)
+ γ4

(
2 cos

k

2
ψmB + ψm+1B

)
. (5d)

Here we use the dimensionless wavevector k in which
the primitive lattice vector of the ribbon is embedded so that
the range of k runs from −π to π . Since the Z-BGNR is
terminated along the x-axis, the following boundary conditions
are imposed: ψ0λ = ψN+1λ = 0. From the recurrence
relations, we notice that when γ4 is taken to be zero particle–
hole symmetry exists in the band structures. In other words,
for γ4 = 0, one set of eigenvalue and eigenvector solutions
of {ε,ψm A, ψmB , ψm Ã, ψmB̃ } guarantees the existence of
the other orthogonal solution {−ε,−ψm A, ψmB ,−ψm Ã, ψmB̃ }.
Hence the band structure is symmetric with respect to ε = 0.
On the other hand, when γ4 is included, the particle–hole
symmetry is broken.

3. Electronic structure of Z-BGNRs

We study the electronic structures of Z-BGNRs with finite
ribbon width N with special focus on the edge states. We first
investigate a semi-infinite Z-BGNR and analytically show the
signatures of the trigonal warping of the Fermi surface in the
edge states. Hence our main interest lies in the bands near
ε = 0, which contain the states localized at the ribbon edge.
For ε = 0, the four coupled equations (5) are decomposed into
the two coupled ones. One of the two coupled equations only
involves ψB and ψB̃ . By solving these equations, we notice
that they lead to unphysical solutions unless ψmB = ψmB̃ = 0.
The other two equations, which containψA and ψ Ã, are written
as

ψm+2A + β(2 − γ̄1γ̄3)ψm+1A + (β2 − γ̄1γ̄3)ψm A = 0

γ̄1ψm Ã = −(βψm A + ψm+1A)
(6)
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where γ̄1 ≡ γ1/γ0, γ̄3 ≡ γ3/γ0, and β ≡ 2 cos(k/2). The first
equation can be solved by substituting an ansatz of ψm A ∝ μm

into equation (6). As expected from the double degeneracy
of band structures of bilayer graphite at the particle–hole
symmetry (ε = 0), one can obtain two independent solutions
μ± as follows:

μ± = −β
(

1 − γ̄1γ̄3

2

)
±

√

γ̄1γ̄3(1 − β2)+ β2

(
γ̄1γ̄3

2

)2

,

where the localization lengths are given by ξ± = | ln |μ±||−1.
We denote the two solutions as ψ±

m A for μ± respectively.
In order to have a physical normalizable solution, one needs to
impose the following condition for μ: |μ| < 1. This condition
restricts the range of the k values supporting the zero-energy
edge states as follows:

For ψ+
m A, 2 cos−1

√
1 + γ̄1γ̄3

2
� k � π

For ψ−
m A

⎧
⎪⎪⎨

⎪⎪⎩

2 cos−1

√
1 + γ̄1γ̄3

2
� k � 2π

3

2 cos−1 1 − γ̄1γ̄3

2
� k � π.

(7)

At k = π , the edge state has the form ψm A = (±√
γ̄1γ̄3)

m

and ψm Ã = −(±√
γ̄1γ̄3)

m+1/γ̄1. Hence the localization length
of a semi-infinite Z-BGNR is finite at the zone boundary, while
a semi-infinite monolayer GNR is completely localized at one
edge for k = π . It is interesting to notice that Z-BGNRs also
support a completely localized mode at k∗ = 2 cos−1 √

γ̄1γ̄3/2
at which μ = 0.

In figure 2(b), a schematic diagram of the edge states
is plotted with respect to k, where the two edge modes
are represented by two different colors. The yellow (pale
gray) edge mode ψ+

m A exists from the point T1 at k =
2 cos−1 √

1 + γ̄1γ̄3/2 to the zone boundary, as observed in a
monolayer GNR as well. Remarkably, we notice that the red
(dark gray) edge mode ψ−

m A has a forbidden region between
the Dirac point D at k = 2π/3 and the point T2 at k =
2 cos−1(1 − γ̄1γ̄3)/2. The existence of a forbidden region is a
unique feature of Z-BGNRs. We draw two symmetric warped
bands within this region, since the bands should be continuous
and particle–hole symmetric. By comparing to the graphene
bilayer system, the point D corresponds to the Dirac point
while the points T1 and T2 correspond to the Fermi points of
the three legs L1, L2 and L3 of the graphene bilayer which are
indicated in the inset of figure 2(a) [24]. This correspondence
can be explicitly shown by comparing these points. A previous
study of the graphene bilayer has shown that the three legs
are displaced by 2γ̄1γ̄3/

√
3 from the Dirac point D and are

placed at the points with triangular symmetry [24]. If one
projects these leg points onto the axis of zigzag chirality, the
two leg points are located at k = 2π/3 + 2γ̄1γ̄3/

√
3 and

k = 2π/3 − γ̄1γ̄3/
√

3. These values previously obtained by
the �k · �p approximation agree perfectly with the two points T1

and T2 in equation (8) for small γ̄1 and γ̄3. We have confirmed
the above feature of the zero-energy edge states and the warped
bands by numerically solving equation (5) for relatively wide
Z-BGNR with widths N = 100 and 200 as shown in the inset

of figure 2. In order to see the above feature more clearly, we
have taken values for γ̄1 and γ̄3 about five times larger than the
experimental ones. Our numerical results agree well with that
for a semi-infinite Z-BGNR.

Recently, Ryu et al suggested a criterion for the existence
of edge states based on bulk energy dispersion, which may be
applicable to a certain class of edge states [27]. They studied
the following particle–hole symmetric Hamiltonian:

H =
∑

�k
c†

�kh�kc�k =
∑

�k
c†

�k
( �R(�k) · �σ )

c�k (8)

where c†
�k = (c†

�k↑, c�k↓) and �σ is a three-component vector
of the Pauli matrices. This type of Hamiltonian includes the
Bogoliubov–de Gennes and the GNR Hamiltonian as well.
Their criterion for this Hamiltonian to have zero-energy edge
sates is that the closed trajectory of �R(�k), being confined
in a 2D plane, encloses the gap-closing point. We want
to understand our result for Z-BGNRs based on the above
criterion. By analyzing the 2D graphite bilayer system using
the exact diagonalization method, one can obtain four energy
bands, which we take to be | �R(�k)| [27]. We have analyzed
the behaviour of one of | �R(�k)| s and noticed that it goes to
zero three times at ky = 2 cos−1

√
1 + γ̄1γ̄3/2, 2π/3 and

2 cos−1(1− γ̄1γ̄3)/2, respectively. We presume that these three
points indicate the boundaries of the three distinct topological
sectors of | �R(�k)| where the closed loops within 2π/3 < ky <

2 cos−1(1 − γ̄1γ̄3)/2 exclude the gap-closing point. Hence we
argue that it corresponds to the edge mode of ψ−

m A . Strictly
speaking, our bilayer graphene system is outside this scope,
since the bilayer Hamiltonian is described by the 4×4 traceless
Hermitian matrix. Furthermore, since only the magnitude of
�R(�k) is available, we are not able to directly confirm our

conjecture yet.
We now calculate the full electronic structures of Z-

BGNRs with finite ribbon width N by numerically solving
equation (5). We obtain the band structures of two finite width
Z-BGNRs with N = 4, 5 as shown in figure 3. In order
to study the edge states and the low-lying energy excitations
analytically, we diagonalize the 4N×4N matrix of equation (5)
with ε = 0. By taking the determinant of the matrix to be zero,
that is, [(2 cos(k/2))2 − γ̄1γ̄3]2N = 0, one can see that the band
touches ε = 0 at ±k∗ independent of N . In order to calculate
the dispersion relations around (k, ε) = (k∗, 0), we expand the
determinant with respect to (k∗, 0) and obtain the following
results:

ε ≈

⎧
⎪⎪⎨

⎪⎪⎩

±
√

γ̄1γ̄3

γ̄ 2
1 + γ̄ 2

3

(2(k − k∗))N (N = odd)

±
√

1
2 (2(k − k∗))N (N = even)

(9)

where ε is written in units of γ0. These peculiar dispersions are
demonstrated in our numerical result as shown in the insets of
figure 3. When the ribbon width N goes to infinity, the energy
dispersion becomes flattened leading to localized edge states.
A similar behaviour has been observed for monolayer GNR
with k∗ being replaced with k = π . Unlike the monolayer
GNR, a small gap opens at the zone boundary. The magnitude
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Figure 3. (a) The band diagram of a Z-BGNR with the following parameters: γ̄1 = 0.12, γ̄3 = 0.1 and γ̄4 = 0 for N = 4. The inset shows a
magnified view of the low energy region, with power law dispersion of the edge bands. (b) The band diagram of the Z-BGNR for N = 5.

of the gap can be calculated approximately by considering
the weak coupling between those edge modes localized at the
different edges. We define the following four states which are
constructed from the two semi-infinite Z-BGNRs localized at
the opposite edges for k = π :

|L〉 = ψ1A
(|1A〉 − γ̄3|2 Ã〉 + γ̄1γ̄3|3A〉 + · · · ) (10a)

|L̃〉 = ψ1 Ã

(|1 Ã〉 − γ̄1|2A〉 + γ̄1γ̄3|3 Ã〉 + · · · ) (10b)

|R〉 = ψN B
(|N B〉 − γ̄3|N − 1B̃〉

+ γ̄1γ̄3|N − 2B〉 + · · · ) (10c)

|R̃〉 = ψN B̃

(|1A〉 − γ̄3|N − 1B〉
+ γ̄1γ̄3|N − 2B̃〉 + · · · ), (10d)

where |L〉 and |L̃〉 represent the localized states at the left edge,
while |R〉 and |R̃〉 are those at the right edge. Using these four
orthogonal states as the basis, the matrix elements of the tight
binding Hamiltonian can be calculated leading to the following
results:

ε =
{ ±(γ̄1γ̄3)

N
2 (N = even)

±γ̄1(γ̄1γ̄3)
N−1

2 ,±γ̄3(γ̄1γ̄3)
N−1

2 (N = odd).
(11)

For even-width ribbons the two split edge bands in the first
quadrant converge to a single value ε = (γ̄1γ̄3)

N/2 at the zone
boundary, while they remain split for the odd ones. This is due
to the reduced symmetry of the odd-width ribbons compared
to the even ones.

According to the previous experiments, the band
parameter γ4 was assumed to be much smaller than γ1 and γ3

by an order of magnitude [24, 28–31]. The typical values for
the hopping amplitudes are taken to be γ̄1 = 0.12, γ̄3 = 0.1
and γ̄4 = 0.014 [26]. Hence it is the usual practice to neglect
the contribution of γ4. Here we want to investigate the effect
of γ4 on the low-lying energy dispersion. Within the �k · �p
approximation, we notice not only that the Fermi energy ε = 0

has a downward shift by �ε ≈ −2γ̄1γ̄
2
3 γ̄4 but also that the

particle–hole symmetry is broken upon inclusion of γ4.
Figures 4(a) and (b) show the band structures for N =

4, 5 obtained by numerically solving equation (5). One can
observe the downward shift of the Fermi energy as expected.
Interestingly, the degenerate two bands at k = k∗ for γ4 = 0
are split into two bands with an indirect energy gap. We denote
the extremal points as ke for an electron pocket and kh for a
hole pocket as indicated in the insets of figure 4. When N goes
to infinity, the bands become flattened.

We have closely examined the positions of ke and kh with
increasing N and observed that the inclusion of γ4 leads to a
qualitatively different behavior. In figure 5, we plot ke and
kh with respect to 1/N and extrapolate to N → ∞. With
increasing N , ke and kh, which used to be fixed at k∗, are
moving toward the vicinity of the Dirac point at k = 2π/3.
By fitting the energy dispersions near k∗

e and k∗
h up to N = 4,

we find that the peculiar dispersions of ε ∼ (k − k∗)N reduce
to the parabolic one except for the N = 1 case.

4. Magnetic properties of Z-BGNRs

When the Coulomb interaction U is present in the monolayer
graphene system, sublattice ferromagnetism can appear
beyond a certain critical value of U . The most favorable
spin configuration is known to be the opposite magnetization
between two sublattices A and B , which is consistent
with Lieb’s theorem regarding the magnetism of bipartite
lattices [32]. For the case of a zigzag GNR, the existence
of almost flat bands at zero-energy stabilizes the sublattice
edge ferromagnetism even for the weak Coulomb interaction.
Recently it has been proposed that a zigzag GNR can
become half-metallic when a transverse electric field is
applied [17, 18, 22]. We have studied the edge magnetism of
Z-BGNRs by applying the Hartree–Fock approximation to the

5
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Figure 4. (a) The band diagram of the Z-BGNR with the band parameters γ̄1 = 0.12, γ̄3 = 0.1 and γ̄4 = 0.014 for N = 4. The inset, a
magnified view of the low energy region, demonstrates broken particle–hole symmetry and parabolic dispersions. (b) The band diagram of the
Z-BGNR for N = 5.

0.05 0.1 0.15 0.2

1
     
N

ke or kh

2.2

2.4

2.6

2.8
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Figure 5. Plot of ke and kh with respect to 1/N . The extrapolated
values of ke and kh approach near to the Dirac point
(k = 2π/3 ∼ 2.094).

half-filled Hubbard Hamiltonian. Following the Hartree–Fock
decoupling, the Hubbard Hamiltonian can be written by

HMF = −
∑

〈i, j〉,σ
ti j c

†
iσ c jσ + U

∑

i

[〈ni↓〉ni↑ + 〈ni↑〉ni↓

− 〈ni↑〉〈ni↓〉] (12)

where we have included the on-site Coulomb interaction U
and niσ = c†

i,σ ci,σ . The mean electron density 〈niσ 〉 is kept
constant in a given dimer line due to translational invariance.
Based on the above Hartree–Fock Hamiltonian, we have solved
the self-consistent equations. Since the inter-layer hopping
parameters γ1 and γ3 are much smaller than the intra-layer one
γ0 by an order of magnitude, we take the initial configuration
for iteration as the two coupled ground state configurations of a
monolayer GNR. Following the symmetry of Z-BGNRs, there
exist two possible inter-layer spin configurations, as shown
in figure 6. One is the anti-ferromagnetic alignment (AFM)
of inter-layer edge spins within the same side of the edges:
〈n A,m,σ 〉 = 〈nB̃,N−m+1,σ 〉 and 〈nB,m,σ 〉 = 〈n Ã,N−m+1,σ 〉.

1 2 3 1 2 3

Figure 6. Two possible configurations of the magnetic moments are
illustrated at the left part of the Z-BGNR. Black and gray lines
represent dimer lines of the upper and lower layer, respectively.
Yellow (pale gray) arrows are the magnetic moments of the lower
layer while red (dark gray) arrows are for upper one. (a) The AFM
configuration. At the left edge, the spin polarization at the upper
(1 Ã) and lower edge (1A) layer are opposite. (b) The FM
configuration. The spin polarization at the upper (1 Ã) and lower
edge (1A) layer are parallel.

The other is the ferromagnetic alignment (FM) of inter-layer
edge spins: 〈n A,m,σ 〉 = 〈nB̃,N−m+1,σ̄ 〉 and 〈nB,m,σ 〉 =
〈n Ã,N−m+1,σ̄ 〉.

In order to see which configuration is energetically
favorable, we have calculated the total energy of the system
in those two cases. The differences between two energies
EAFM − EFM are plotted as a function of U in figure 7. Here we
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Figure 7. A plot of the energy differences per unit cell between the
AFM and FM configurations for the N = 10 Z-BNGR and 2D
graphite bilayer (inset) plotted as a function of U . The unit of energy
is γ0.

have examined a Z-BGNR of width N = 10 and the inter-layer
hopping parameters γ̄1 = γ̄3 = 0.1. We notice that both AFM
and FM configurations open a gap by lifting off the flat bands.
Figure 7 demonstrates that the FM configuration becomes
immediately stable upon including the Coulomb interaction.
Since the ferromagnetic alignment of the upper and lower edge
spins leads to inter-layer anti-ferromagnetic coupling between
the nearest neighbor spin pairs connected by γ1 and γ3, the
ferromagnetic alignment will become energetically favorable
for large U . Hence for the experimentally relevant value of U ,
that is, U/γ0 ∼ 1, the FM configurations are stable [33–35].
We have also studied the bulk magnetism for the bilayer
graphene system. In the inset of figure 7, the energy differences
EAFM − EFM are plotted as a function of U . With the increase
of U above Uc

∼= 2.5γ0, the paramagnetic spin state becomes
the FM one, which agrees with the result for the monolayer
graphene system. Hence for Z-BGNRs, spin fluctuations at the
edges enhance the appearance of the FM configurations even
below Uc.

5. Conclusions

We have studied the electronic and magnetic structures of
edge states of zigzag bilayer GNRs within the tight binding
approximation. Neglecting the band parameter γ4, we obtained
a peculiar dispersion relation ε ∼ ±(k − k∗)N with k∗ =
2 cos−1 √

γ̄1γ̄3/2 which is fixed, independent of the ribbon
width N . As N increases, dispersionless edge bands at
ε = 0 appear just as for a monolayer zigzag GNR. By
investigating the semi-infinite Z-BGNR analytically, we notice
that trigonal warping of the graphene bilayer leads to the
following interesting effect on the edge state structure of
the Z-BGNR. One of the edge state at ε = 0 is absent
within the region between the Dirac point (k = 2π/3) to

k = 2 cos−1(1 − γ̄1γ̄3/2), where the bulk warped bands used
to be present. With the inclusion of γ4, the particle–hole
symmetry is broken in our Z-BGNR system. There exists an
indirect gap between two edge bands, whose band extrema
are located at ke and kh, respectively. Instead of a fixed k∗
as for the case of γ4 = 0, ke and kh approach near to the Dirac
point with increasing N . The magnetic properties of Z-BGNRs
are studied by solving the Hubbard type Hamiltonian using
the Hartree–Fock approximation. We have shown that for a
realistic value of U , the ferromagnetic alignment of inter-layer
edge spins within the same side of edges is favored.
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